Second quantisation
One mag describe a quantum system of N identical particles by specitijing their wavetunction.
Each partite may be in one of stater $\psi_{1}\left(\vec{r}_{1}\right), \psi\left(\vec{r}_{2}\right), \ldots$ (orth., norm)
Many-paticle w.f. $\quad \psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)$
$\mid \psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N} \|^{2} d \vec{r}_{1} \ldots d \vec{r}_{N}\right.$ is the probability to find particle 1 in the element $d \vec{r}_{1}$ around location \vec{r}_{1}, particle 2 in the element $d \vec{r}_{2}$ around location \vec{r}_{2}, etc.

The method of second quantisation is a method of describing a system of particles in different variables: the number of particles in each quanturn state. In other words, the system is described by a
mavetunction $c\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots, t\right)^{-}$
The number /of particles in the 1 it quantum state
\# particles in the 2 no state
$\left|C\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots, t\right)\right|^{2}$ - the probability to
Find n_{1} particles in the 1 it state, n_{2} in the 2 and,...
Example: a rectangular box:

$$
\psi_{k}=\sqrt{\frac{2}{L}} \sin \left(\frac{k \pi}{L} x\right), k=1,2,3, \ldots
$$

$$
\left|n_{1} n_{2} n_{3} \ldots\right\rangle
$$

Number of particles with $k=1$
$\left(\psi=\sum\left(m_{n}, n_{n}, n_{2}\right) \mid n_{1}, n_{2}, \ldots\right)$ Number of particles with $k=2$

Example:
hydrogen-like atom (a charged core attracting electrons)

$$
\begin{array}{ccc}
n & l & \sigma_{z} \\
1 & 0 & \pm \frac{1}{2} \\
2 & 0,1 & \pm \frac{1}{2} \\
3 & \cdots & \cdots
\end{array}
$$

$$
\left(\begin{array}{lll}
n_{1} & n_{2} & n_{3} \ldots
\end{array}\right)
$$

\# of electrons in 15 with \uparrow \# of/electrong in 15 with \downarrow -C inith 1
\# of /execrong ir in
\# of electrons in 25 with 1

As an example, consider a system of bosons
If Reminder $\psi\left(\vec{r}_{1}, \ldots, \vec{r}_{i}, \ldots, \vec{r}_{k}, \ldots\right)=\psi\left(\vec{r}_{1}, \ldots, \vec{r}_{k}, \ldots, \vec{r}_{i}, \ldots\right)$
Non-interacting bosons

$$
\frac{\text { Non-interacting bosons }}{\left|n_{1}, n_{2}, \ldots, n_{k}, \ldots\right\rangle \leftrightarrow\left(\frac{n_{1}!n_{2}!\ldots n_{k}!\ldots}{N!}\right)^{\frac{1}{2}} \sum_{\substack{\text { Permutations } \\ \text { of } k_{1}, k_{2}, \ldots}} \psi_{k_{1}}\left(\vec{r}_{1}\right) \psi_{k_{2}}\left(\overrightarrow{r_{2}}\right) \ldots}
$$

Non-interacting fermions

$$
\left|n_{1}, n_{2}, \ldots, n_{k}, \ldots\right\rangle \leftrightarrow \frac{1}{\sqrt{N!}} \sum_{\text {Permutatayy }}(-1)^{p\{k\}} \psi_{k_{1}}\left(r_{1}, \psi_{k_{2}}\left(\vec{r}_{2}\right) \ldots\right.
$$

where $P\{k\}=1$ for $k_{1}<k_{2}<\ldots$

Because the fermionic mavetunction is antisymmetric with respect to all variables, each occupation number n_{i} is either 0 or 1
$1000 \ldots>$ Vacuum

Creation and annihilation operators Defined both for bosons and for fermions

$$
\hat{a}_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=\sqrt{n_{i}}\left|n_{t}, \ldots, n_{i}-1, \ldots\right\rangle
$$

(if the state with $n_{i}-1$ particles doses exist, ie. $n_{i}=0$, then the is 0)

$$
\hat{a}_{i}^{+}\left|n_{1}, \ldots, n_{i}+1, \ldots\right\rangle=\sqrt{n_{i}+1}\left|n_{1}, \ldots, n_{i}+1, \ldots\right\rangle
$$

(provided this state exists,
otherwise 0)
Consider the termisnic case specitically:

$$
\begin{aligned}
& \hat{a}_{i}|\ldots, \underset{i-t h}{ }, \ldots\rangle=0 \\
& \hat{a}_{i}^{+}\left|\ldots,{ }_{\substack{1 \\
i-t h}}^{1, \ldots\rangle}\right\rangle=1 \\
& \hat{a}_{i}|\ldots, 1, \ldots\rangle=|\ldots, 0, \ldots\rangle \\
& \hat{a}_{i}^{+}|\ldots, 1, \ldots\rangle=0 \\
& \begin{array}{c}
\text {;-th state is either empty } \\
\text { or filled }
\end{array} \\
& \text { or filled }
\end{aligned}
$$

Operators \hat{a}_{i} and \hat{a}_{i}^{+}are Hermitian-conjugate to each other, as can be seen from finding their matrix elements

- Matrix elements for bosors

Matrix elements tor bosons

$$
\begin{aligned}
& \left\langle n_{1}, \ldots, n_{i}, \ldots\right| \hat{a}_{i}\left|n_{1}, \ldots, n_{i}+1, \ldots\right\rangle=\sqrt{n_{i}+1} \\
& \left\langle n_{1}, \ldots, n_{i}+1, \ldots\right| \hat{a}_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=\sqrt{n_{i}+1}
\end{aligned}
$$

Indeed, $\hat{a}_{i}^{+}=\hat{a}_{i}$
Matrix elements for fermions
Consider the operator $\hat{a}_{i}^{+} \hat{a}_{k}$

$$
\begin{aligned}
& \text { Consider the operator } \hat{a}_{i}^{+} \hat{a}_{k} \\
& \langle\ldots, 1, \ldots, 0, \ldots| \hat{a}_{i}^{+} a_{k}|\ldots, 0, \ldots, 1, \ldots\rangle=(-1)^{l=k-1} n_{l=i+1} n_{l} \\
& \hat{i}^{-} \text {th } \hat{k}_{k-t h} \quad \text { i-th } \hat{k}_{k}+t \\
& \langle\ldots, 0, \ldots| \hat{a}_{i}|\ldots, 1, \ldots\rangle=(-1)_{l=1}^{i-1} n_{l} \\
& \langle\ldots, 1, \ldots| \hat{a}_{i}^{+}|\ldots, 0, \ldots\rangle \\
& i_{i-t h}
\end{aligned}
$$

One can also see that $\hat{a}_{i}^{+}=\left(\hat{a}_{i}\right)^{+}$

Operator of the number of particles
Consider the operator $\hat{a}_{;}^{+} \hat{a}_{j}$

$$
\hat{a}_{i}^{+} \hat{a}_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=n_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle
$$

So, $\hat{n}_{i}=\hat{a}_{i}^{+} \hat{a}_{i}$
Do that in detail

One may also consider the operator $\hat{a}_{i} \hat{a}_{i}^{+}$
For bosons, $\hat{a}_{i} \hat{a}_{i}^{+}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=\left(n_{i}+1\right)\left|n_{1}, . ., n_{i}, \ldots\right\rangle$
Do that in detail too

So, for bosory, $\hat{n}_{j}+1=\hat{a}_{i} \hat{a}_{i}^{+}$

$$
\hat{a}_{i} \hat{a}_{i}^{+}-\hat{a}_{i}^{+} \hat{a}_{i}=1 \quad(b \text { osong ! })
$$

For termions

$$
\left\{\begin{array} { l }
{ \hat { a } _ { i } \hat { a } _ { i } ^ { + } | \ldots , 0 , \ldots \rangle = 1 , 0 , \ldots \rangle } \\
{ \hat { a } _ { i } \hat { a } _ { i } ^ { + } | \ldots , 1 , \ldots \rangle = 0 }
\end{array} \quad \left\{\begin{array}{l}
\hat{a}_{i}^{+} \hat{a}_{i}|\ldots, 0, \ldots\rangle=0 \\
\left.\hat{a}_{i}^{+} \hat{a}_{i}|\ldots, 1, \ldots\rangle=1 . \ldots, 1, \ldots\right\rangle
\end{array}\right.\right.
$$

So, for termions $\hat{a}_{i} \hat{a}_{i}^{+}=1-\hat{n}_{i}$

$$
\hat{a}_{i} \hat{a}_{i}^{+}+\hat{a}_{i}^{+} \hat{a}_{i}=1 \text { (termions!) }
$$

Generic commutation relations
From the definition of bosonic creation and annihilation operators it follows that

$$
\begin{aligned}
& \hat{a}_{i} \hat{a}_{k}^{+}=\hat{a}_{k}^{+} a_{i} \quad \forall i \neq k \\
& {\left[\hat{a}_{i}, \hat{a}_{k}^{+}\right] \equiv \hat{a}_{i} \hat{a}_{k}^{+}-\hat{a}_{k}^{+} \hat{a}_{i}=\delta_{i k}}
\end{aligned}
$$

Similarly, $\left[\hat{a}_{i}, \hat{a}_{k}\right]=0,\left[\hat{a}_{;}^{+}, \hat{a}_{k}^{+}\right]=0$ Eermionic operators

$$
\begin{gathered}
\hat{a}_{i} \hat{a}_{k}^{+}=-\hat{a}_{k}^{+} \hat{a}_{i} \\
\left\{\hat{a}_{i}, \hat{a}_{k}^{+}\right\} \equiv \hat{a}_{i} \hat{a}_{k}^{+}+\hat{a}_{k}^{+} \hat{a}_{i}=\delta_{i k} \\
\left\{\hat{a}_{i}, \hat{a}_{k}\right\}=0,\left\{\hat{a}_{i}^{+}, \hat{a}_{k}^{+}\right\}=0
\end{gathered}
$$

Generically, in physics sets of opentars are otter called termianic if $\{\hat{A}, \hat{B}\}=0$ and bosonic if $[\hat{A}, \hat{B}]=0$

